Robotics In The Food Industry Processing & Packaging

3A Sanitary Standards Institute Annual Meeting

Bob Rochelle

Stäubli Corporation

Robotics In The Food Industry

- What is Robotics?
- The Robotics Industry
- The Business Case for Robotics
- Food Industry Requirements and Applications
- The Draft 3A Standard

Robotics = Flexible Automation

Manual

- Fast product change
- Breaks
- Monotonous tasks
- Health claims
- Labor issues
- Training

Dedicated Automation

- High volume
- Requires set-up time
- More maintenance
- Air cylinders / actuators
- Rigid conveyors / fixtures

Flexible Automation

- Quick product change
- Programmable
- Repeatable
- Changeable cell configuration
- Responds to part changes

Flexibility is the antidote to uncertainity


Robotics Industry

History

- 1956 Development began
- 1961 First installation
- Over 1,000,000 at work today
- Over 200,000 sold per year
- Yearly Industry Revenue
 - \$5,000,000,000 robots
 - \$15,000,000,000 systems

Growth rate average 18% yearly

- Except 2008 / 2009 / 2010
- Very Strong 2012 and 2013
 - Outside of Automotive
- Largest Industry and Markets
 - Automotive 47%
 - Electronic -15%
- Major Applications
 - Material Handling 39%
 - Welding 30%

www.robotics.org

Robots are the Heart of Lean Manufacturing Practices

Buy a Robot and Save America

Article in Forbes Magazine "Buy a Robot and Save America"

- Average wage for an <u>unskilled</u> worker is \$15 \$20 per hour plus benefits
- Average UAW wage for <u>unskilled</u> trades is \$30 \$35 per hour plus benefits
- Average wage for similar labor in China is \$3 per hour plus benefits(?).
 - Offshore Manufacturing Risks and Issues
 - Higher transportation costs and more problems
 - Longer delivery times
 - Quality problems
 - International concerns like terrorism
 - Loss of real-time control of manufacturing
 - Loss of ability to make quick product or process changes
 - Loss of closeness to your market and your end-customers
- A robot works 24 / 7 / 365 without breaks, benefits and legacy costs etc.....

Forbes magazine article in April 2008

Buy a Robot and Save America

2 shifts per Day Material Handling for 20 Years (80,000 hours)

- 30 Kg Size 5.4 kVA rating
 - Electric rates 0.11 KwH = 0.594 cents per hour
- Maintenance Costs for 80,000 hours
 - 10,000 hour Lubrication Lube 8 times
 - Year 3, 6 and 9 about \$500 in lubrication costs
 - 8 10 Years expect some form of unscheduled maintenance
 - \$5,000 from typical service life cycle costs
 - Well after 10 years refurbishment may be required
 - Typical cost for full refurbishment \$10,000

Robots work 24 / 7 / 365 without breaks and benefits

Do The Math

2 shifts / day for 20 Years

- Rebuild once in 20 years.....\$10,000
- Maintenance for 20 years.....\$13,000
 - Lubrication.....\$3,000
 - Unscheduled repairs.....\$10,000
- Power 0.59 x 80,000 hours......\$47,200
- Total <u>\$70,200</u>

• OR do it Manually.

• 80,000 hours x \$30.00..... <u>\$2,400,000</u>

• Savings...... \$2,329,800

Buy a Robot and Save America

Back to the Article in Forbes Magazine "Buy a Robot and Save America"

- Average wage for an unskilled worker is \$15 \$20 per hour plus benefits
- Average UAW wage for unskilled trades is \$30 \$35 per hour plus benefits
- Average wage for similar labor in China is \$3 per hour plus benefits(?).
- Average wage for a robot is under \$1 per hour with no benefits.

THIS IS THE BUSINESS CASE FOR ROBOTICS!

Why Automate?

Reasons for Automating Processes

- Need to reduce direct labor
- Can't get people to do the job
- Need to increase quality
- Difficult to do the job manually
- Need to increase production
- Difficult to meet specifications consistently
- Need to provide flexibility in processes
- Hazardous to personnel
- Eliminates a contamination source

Robot system average reliability is greater than 99.5%

The Food Industry

Traditional Applications – Mostly Packaging Areas

- Palletizing
- Secondary Packaging
 - Case packing / carton loading
- Primary Packaging
 - Dependent upon the products

Current and New Applications

- Handling raw or unpackaged food products
 - Primary Packaging
 - Processing
- Requires wash down, clean systems
- Resistant to corrosion
- Resistant to water damage
- Warehouse

ROBOTICS

Unique Considerations exist in Food Industry Automation Systems

Food Robot System Requirements

Any Robotic Automation System Specifications

Reach / Payload / Speed / Inertia

Protection from Water and Humidity

- Sealed Design with Smooth Finish for Drainage
 - Higher IP Rating is more protection
 - But not necessarily 'clean'
 - Protected from water with sealed covers
 - Motors and 'electronics'
- Corrosion resistant coating
- Purged to prevent water entry and damage
- Cabling protected from water
- Locate Controls away from water damage
- Covers
 - Condensation inside creates corrosion
 - Leaks when damaged or installed incorrectly

Food Products

• Secondary Packaging

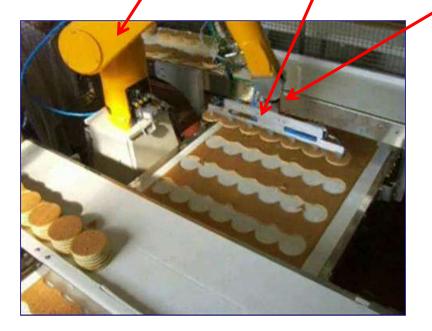
- Bread Loaves Packaging
- Packaged Egg Rolls into Display Boxes

Primary Packaging

- Sausages into trays
- Bulk Pastries into cases
- Stacking Hamburgers

Processing

- Handling Whole Chickens
- Stirring Cheese Curds
- Tending a Cheese Slicer
- Ham De-boning
- Bread Scoring



3A (Draft) Standard Highlights

- Pertinent to Robot Arm, End of Arm Tooling and Tool Changer only
 - Other system components 'covered' in other 3A standards

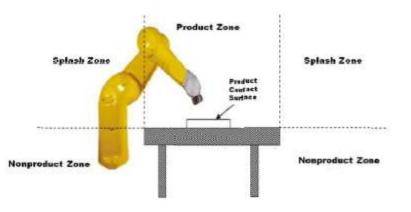
3-A* Sanitary Standard for Robot-Based Automation Systems

undarih Developing Organization

3-4 Supersy Renderth, Inc. 5-4 (20) Incessionation with United Reast Paths Read International (2005) United Reast Pool and Day, Johnston (2005) United Reast Programming 4-Decident (2004) Devide Regional Engineering 4-Decide Cong (2002)

ROBOTICS

Tooling is the most important component in any automation system


3A (Draft) Standard Highlights

• Pertinent to Robot Arm, End of Arm Tooling and Tool Changer only

• Other system components 'covered' in other 3A standards

• Requirements

- Postures to promote draining away from the Product Zone
- Home position in a posture that promotes draining and is not over the Product Zone
- Only in the Product Zone when performing work
- Sealed, Cleanable Design with Smooth Finish for Drainage
 - Positive air pressure 'on' during cleaning and operation
- Tooling must be removed for cleaning
 - Tool Changer or manually
- Tooling is Product Contact
- Locate Controls away from water damage

Written by Robot Geeks - we want your input

Summary

Robotics is an applicable technology for Food Processing applications

• Your competitors are automating

• The Food Processing Industry needs a leader in adopting this technology

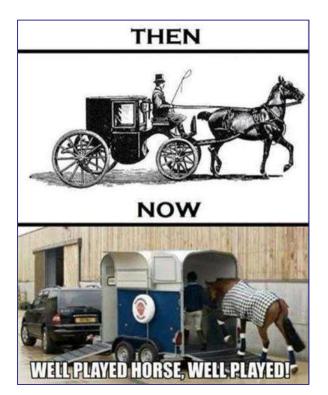
- The food industry is a recognized growth market for industrial robotics
- *'The window of opportunity' is open for the 3A SSI right now*

• Robot based automation is a mature, proven technology in many industries

- It is 'relatively' new to the food processing industry
- Throughout history resistance to new technology is common
 - Trains, automobiles, air travel, telephone, fax, email, internet, social media etc....

Thank You

Bob Rochelle


Food & Packaging Industry Specialist

201 Parkway West Duncan, SC 29334 USA

(248) 924-6206 b.rochelle@staubli.com

www.staublirobotics.com

