NEW STRATEGIES FOR BIOFILM ELIMINATION

SCOTT L. BURNETT, PH.D. DIRECTOR OF RESEARCH & DEVELOPMENT

May 2, 2017 3-A Equipment & Beyond

The Problem

Residual Spore-former Biofilm in Clean Processing Equipment

Can cause a variety of production and quality issues

- Out-of-spec spore count in powders
- Shortened / inconsistent shelf-life
- Acid accumulation and reduced pH
- Non-sterility defects in UHT processed milk
- Reduced membrane production flux and output

Today's discussion

- Spore-forming bacteria and biofilms
- Presence and accumulation in dairy processing equipment
- New strategies for control and elimination

Milk Microbiology

Milk in the cow is sterile.

Can become contaminated with all types of microorganisms.

Level of contamination is influenced by:

- health of the cow
- farm workers
- equipment
- environment
- holding temperature
- holding time

Review of literature

Surveys of spore-forming bacteria in dairy

Most common aerobic thermophilic/thermoduric sporeformers in dairy processing & products

- Bacillus licheniformis
- Bacillus coagulans
- Bacillus cereus
- Bacillus pumilus
- Geobacillus sp. (mainly G. stearothermophilus)
- Anoxybacillus sp.
- High heat resistant spores of mesophilic *Bacillus* sp. (e.g., *B. sporothermodurans*)

Bacteria Optimum Growth Temperature

Where do the spores come from?

- ▲ Soil is a major reservoir of spore formers
- Bedding materials contaminate udder and teats
- Milk cross contamination from silage. Total spore formers in silage 10²-10⁶ cfu/g (Giffel, 2002)
- ▲ Dirty and poorly maintained milking equipment and practices (Anand, S., 2011, NCCIA)

Characteristics of bacterial spores

- Spores stick very tightly to steel and elastomers
- Once attached, they are very difficult to remove
- Exposure to caustic makes them even more so

Biofilm communities of sporeformers

Free-swimming cells alight on a surface and attach

New genes are expressed to synthesize matrix polymers Artist: P. Dirckx, Center for Biofilm Engineering

Cells coordinate by exchanging signaling molecules

Bacteria reproduce and form microcolonies

Chemical gradients are established

Variety of environmental niches promotes coexistence of diverse species Artist: P. Dirckx, Center for Biofilm Engineering

Critical Areas of Operations

ECSLAB

Significant Sources of **BIOFLIMS** and **THERMOPHILIC ENDOSPORES**

	🥝 <table-cell-columns> 🚺</table-cell-columns>		
 MILK PROCESSING Balance tank Bactofugation or microfiltration (recommended) Separation/standardization HTST (or plate heat exchanger or pasteurizer) Homogenizer Product lines and pumps Pasteurized milk storage tanks 	 SWEETENED CONDENSED MILK PROCESSING Balance tank Homogenizer Cooling plate heat exchanger Slurry tank Mixing & crystallization tank 	ULTRAFILTRATION • Bactofugation • UF membrane system	MILK EVAPORATION • Balance tank • Preheaters (plate or tube) • Pasteurizer • Distribution plate • Calandria • Vapor separator • Concentrate pump

14

Spore populations in dairy powder production

Root Causes of High Spore Levels

- Plant issues
 - Dead legs
 - CIP design
- Residual soil anywhere
- Equipment
 - De-sludge issues
 - Heat exchange surfaces
- Residual biofilm/spores
 - Gasket joints
 - Right angles
 - Cracked gaskets
 - Valves

Importance of gaskets

Spore-former biofilm control best practices

Clean-In-Place and Biofilm Control

Root cause of many dairy quality problems is residual biofilm

- Traditional CIP programs leave small amounts of biofilm and spores in otherwise 'clean' equipment
 - Growth during production and subsequent survival of CIP is a selection pressure leading to the most fit organisms thriving
- Processing equipment inoculated at start up, exponential growth begins at 8-10 hours
- Enhanced CIP removes/inactivates biofilm and spores
- Bacterial population must start from scratch, exponential growth begins at 16-20 hours

Approaches to Clean-In-Place

SOIL TYPE

Fats & Oils	Carbohydrates	Proteins	Minerals
-------------	---------------	----------	----------

EFFECT

Dissolve	Liquefy	Hydrolyze	Disperse	Emulsify		
Rinse						

CHEMISTRY

Alkaline	Acid	Oxidizer	Enzyme	Solvent	Surfactant
----------	------	----------	--------	---------	------------

SOIL TYPE

Alkaline

Alkaline ingredients disperse or dissolve organic soil particles by charge repulsion

SOIL TYPE

Fats & Oils	Carbohyo	drates	Prot	eins	Minerals	
EFFECT						
Dissolve	Liquefy	Hydr	olyze	Dispers	se	Emulsify
Rinse						
CHEMISTRY						
Alkaline	Acid	Oxidizer	Enzy	me 📔 S	Solvent	Surfactant
 Chemical that liberates oxygen to hydrolyze (break down) larger molecules → proteins Used as a booster in alkaline detergents: hypochlorite or peroxide 						

SOIL TYPE

- Compound that reduces surface tension (generally also called a detergent)
- Used to emulsify organic liquid soils (fats, oils, carbohydrates) in water
- Reduces temperature required to liquefy fats & oils

Improved cleaning with formulated caustic

Bremer et al. (2006) Intl J Food Microbiol

Adding mechanical force to chemistry

Laboratory Investigation: Biofilm Removal

Laboratory Investigation: Biofilm Removal

SEM of SS Coupon

Control, SS Coupon, No Biofilm

SEM of Biofilm

Demonstration of biofilm layers on stainless steel control coupons

Control, untreated SS disk imaged after growing biofilm (no chemical treatment)

Note biofilm layering, visible near edge of coupon

SEM – Pre-treatment step

Control – condition before caustic step

Note smooth EPS coating with potential Bacillus spores present

Condition after pretreatment, before caustic step

Note exposed biofilm layers for more efficient further attack

SEM – Caustic step

After pre-treatment and built caustic

Note even removal of biofilm structure down To base metal surface After exposure to NaOH

Note uneven attack of biofilm structure

SEM – Acid step

After pre-treatment, built caustic, & built acid

Note reduced presence of microbial populations and better base metal surface resolution

After exposure to NaOH + HNO3

Note populations of microorganisms remaining on surface

SEM – Hot Water or Sanitizer step

Final Result from NaOH + HNO₃ + Hot Water

Note very little additional removal of presumed spores vs. previous acid exposure, and significant remaining presence on surface

Enhanced CIP 3.00kV 8.6mm x1.50k SE

Final result from Enhanced CIP

Note nearly complete removal of organic material observed after sanitizer step

FIELD OBSERVATIONS

Cleaning observations

CONVENTIONAL CIP

ENHANCED CIP

Spore control through Enhanced CIP

- Spore control program cleared up persistent infection
- Returned to low counts after 'events'

Spore control in separators

Spore control for extended production

LARGE NONFAT DRY MILK PRODUCER

Baseline showed high variability in day to day quality

Consistently <1000 cfu/g in first 12 hours

Controlling quality means controlling biofilms of spore-formers

- 1. Good practices on the farm & distribution
- 2. Correct sanitary design of equipment
- 3. Diligence in preventative maintenance
- 4. Enhanced CIP

42

Thank You

Scott L. Burnett scott.burnett@ecolab.com

And THANKS to:

Jeff Hutchison Josh Luedtke Justin Valenstein Linda Grieme Tony Erickson Paul Schacht Caleb Powers