

#### Welcome!

### **3-A SSI and the Basics of Hygienic Design**

Bloomington, MN May 1, 2017



#### AGENDA

**3-A Sanitary Standards, Inc.** 

- **3-A SSI and the Basics of Hygienic Design**
- Applying 3-A Principles to Food & Beverage Processing Environments

May 1-2, 2017 Hilton Minneapolis/St. Paul Airport Mall of America E. Bloomington, MN





#### Welcome! Greg Marconnet, Program Chair



#### Special Welcome! Student Travel Award Recipients





### **Student Travel Award Recipients**

- Akhil Reddy Bora, Texas Tech University
- Diego Casas, Texas Tech University
- Yungi Huang, Ohio State University
- Ishwar Katawal, Texas Tech University
- Subbiah Nagappan, Ohio State University



# Key Topics of Learning Objectives

- 3-A SSI history and overview of current structure
- Basic introduction to food regulatory
- Key Concepts of the Hygienic Design Process
- Hygienic Design Considerations
- Manufacturing Techniques
- 3-A Marketplace Benefits
- Holistic Approach Sanitary Design

#### **3-A SSI Executive Director** Tim Rugh





## **Overview of 3-A SSI**

- Intro to 3-A SSI
- The 3-A SSI Consensus Process
- 3-A Symbol Authorization & Certificates



## Intro to 3-A SSI

- Not-for-profit 501 (c) (3) corporation
- Represents three stakeholder groups with a long history of collaboration
  - **\* Regulatory Sanitarians**
  - Processors (Users)
  - Fabricators





## Before 2002 After 2002

Standards Writing-Publishing-TPV-Symbol Training-Education-Harmonization

3-A Sanitary Standards, Inc.

## Who Leads 3-A SSI?

#### Founding Member Organizations

- International Dairy Foods Association (IDFA)
- Food Processing Suppliers Association (FPSA)
- International Association for Food Protection (IAFP)
- American Dairy Products Institute (ADPI)
- 3-A Symbol Administrative Council (dissolved)
- Chair of the 3-A Steering Committee
- One USDA and one FDA representative

## **Role of 3-A SSI**

- Standards Writing and Publishing
- Industry Education and Training
- 3-A Symbol Licensing & Certificate Programs
- Harmonization and Liaison With Other Organizations



#### **3-A SSI is an ANSI-accredited Standards Developer Organization (SDO)**

- 3-A Sanitary Standards
- ✤ 3-A Accepted Practices

#### **Consensus Process - Overview**



## **3-A SSI Voluntary Certificates**

- Require independent Third Party Verification (TPV) of compliance by an independent <u>credentialed</u> authority – a Certified Conformance Evaluator (CCE)
- TPV certification performed via agreement between CCE and Symbol holder
- Scope of TPV program set by 3-A SSI



## Why a TPV Requirement?

TPV brings added assurance that equipment shown on the certificate fully conforms to the applicable 3-A Sanitary Standard or criteria.



## **Purpose of TPV Inspection**

- 3-A Symbol licensing for equipment built to 3-A Sanitary Standard.
- Other voluntary certificate programs:
   Replacement Parts & System Component Qualification Certificate
   3-A Process Certification

## What is the 3-A Symbol?

A registered mark used to show the conformity of equipment designed and manufactured to a 3-A Sanitary Standard

Available for use on a <u>voluntary basis</u> subject to licensing requirements of 3-A SSI



Basics of Hygienic Design Greg Marconnet

The Symbol of Assurance



## Holistic Approach to Hygienic Design



# opportunities Challenges under FSMA

- Hazard Analysis...identification of biological, chemical, physical
- Preventive Controls
- Corrective Actions
- Accurate Monitoring & Verification
- Operator Qualification
- Sanitary Design and cGMP's
- Operations, Sanitation & Maintenance implications



## FSMA Hazards

#### biological, chemical, physical hazards need to consider...

- Raw materials and other ingredients;
- Formulation of the food;
- Manufacturing/processing procedures;
- **Sanitation**, including employee hygiene;
- Condition, function, and design of the facility and equipment;
- Transportation practices;
- Packaging and labeling activities;
- Storage and distribution;
- Intended or reasonably foreseeable use; and
- Any other relevant factors, such as the temporal (e.g., weather-related) nature of some hazards (e.g., levels of some natural toxins).

# Risk Analysis with HARPC/HACCP review for equipment

- Biological
  - Parasites, pathogens
  - Spoilage organisms
  - Pests
- Chemical
  - Allergens, gluten
  - Unapproved additives such as sanitizers, lubricants
  - Materials of construction, odors
- Physical
  - Extrinsic: wood, plastic, metal, glass, stones, cloth, packaging, hypodermic needles, golf balls
  - Intrinsic: seeds, bones, shells, over processed product
  - Material compatibility ingredients, chemicals
  - Equipment parts, damage or debris during maintenance

# Key Steps in Hygienic Design Process

- Define Intended Uses & Risks
- Define Product Zones
- Define Cleaning Method
- Select Approved Materials of Construction
- Provide Accessibility to Clean and Inspect
- Design and Build to Meet Hygienic Criteria

# Define Intended Uses & Risks

| Risk<br>Level | Intended Use<br>and Products                    | Process Type              | Customer                                          |
|---------------|-------------------------------------------------|---------------------------|---------------------------------------------------|
| High          | Injectable Drugs<br>Infant Formula<br>RTE Foods | Post Thermal<br>Treatment | Infant<br>Elderly<br>Pregnant<br>Immune Deficient |
| Medium        | Low Acid Foods<br>Fresh                         | Pre- Thermal<br>Treatment | Healthy Children                                  |
| Low           | High Acid Foods<br>Raw Foods to be<br>Cooked    | In package                | Healthy Adults                                    |

# Microbiology 101 for Hygienic Designers

- Only Five Things to Remember About Microorganisms
  - Incredibly Small
  - Multiple Extremely Fast
  - Very Dangerous or Destructive
  - Easy to destroy with sanitizers
  - Need Food, Water, and Shelter

# "How Big is" – Molds-Bacteria – Viruses

- While we walk through "How Big is" Presentation think about
  - Surface finish of materials
  - Cracks, crevices and pit in materials and welds
  - Bolted joint



Microsoft oint 97-2003 Prese

#### **CELLS** alive! HowBig



10

Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

## Magnification 100 1,000 10,000 100,000 1,000,000

©cellsalive.com













#### **CELLS** alive! HowBig



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

# Magnification 10 100 1,000 10,000 1,000,000

©cellsalive.com


10

Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

# Magnification 100 1,000 10,000 1,000,000



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

## Magnification 10 100 1,000 10,000 1,000,000



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

Magnification
10 100 1,000 10,000 100,000 1,000,000



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

## Magnification 10 100 1,000 10,000 100,000 1,000,000



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

EN • 800x





Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

2000x



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus



#### • 4000x

## **CELLS** alive! HowBig



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

#### 6000x

## **CELLS** alive! HowBig



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

Magnification
10 100 1,000 10,000 100,000 1,000,000



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

Magnification
10 100 1,000 10,000 1,000,000



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

# Magnification 10 100 1,000 10,000 1,000,000

#### S • 20,000 X

## CELLS alive! HowBig



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

# Magnification 10 1,000 10,000 100,000 1,000,000



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

# Magnification 10 100 1,000 10,000 1,000,000



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus



DХ

10



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

## Magnification 100 1,000 10,000 1,000,000



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

## Magnification 1 10 100 1,000 10,000 100,000 1,000,000 Cellsalive.com



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

## Magnification 10 100 1,000 10,000 100,000 1,000,000 Cellsalive.com



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

# Magnification 10 100 1,000 10,000 1,000,000

00,000 X

#### **CELLS** alive! HowBig



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

# Magnification 10 100 1,000 10,000 1,000,000



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

# Magnification 10 100 1,000 10,000 1,000,000



Pin Human hair Dust mite Ragweed pollen Lymphocyte Red blood cell Baker's yeast E. coli Staphylococcus Ebola virus Rhinovirus

## Magnification 1 10 100 1,000 10,000 100,000 1,000,000

## Equipment Cleaning

6 0 Cleaning needs to be at a Microbiological Level!



## How Fast Do Microorganisms Multiple







1 Year



**10 Hours** 





## Infective Dose - FDA Bad Bug Book

- Listeria monocytogenes less than 1,000 cells
- E. Coli O157:H7 -- as few as 10 cells
- Bacillus Cereus 10<sup>6</sup> cells/gram
- Perfringens 10<sup>8</sup> cells
- Staphylococcus 100,000 cells/gram
- Salmonella --15 to 20 cells
- Campylobacter 400-500 cells
- Shigella -- as few as 10 cells
- Hepatitis A 10 to 100 virus particles



## Necessities of Life of a Microorganism







## Key Steps in Hygienic Design Process

- Define Intended Uses & Risks
- Define Product Zones
- Define Cleaning Method
- Select Approved Materials of Construction
- Provide Accessibility to Clean and Inspect
- Design and Build to Meet Hygienic Criteria

## Define Surface Zones

- Product Contact
- Non-Product Contact

## AZ

## **DEFINITION: PRODUCT CONTACT SURFACES**

All surfaces which are exposed to the product and from which splashed product, liquids, or soil may drain, drop, diffuse or be drawn into the product or onto surfaces that come into contact with product surfaces of packaging materials.





## **DEFINITION: PRODUCT CONTACT SURFACES**

All surfaces which are exposed to the product and from which splashed product, liquids, or soil may drain, drop, diffuse or be drawn into the product or onto surfaces that come into contact with product surfaces of packaging materials.



## **DEFINITION: NON-PRODUCT CONTACT SURFACES**

All exposed surfaces from which splashed product, liquids, or other soils <u>cannot</u> drain, drop, diffuse or be drawn into or onto the product, product contact surfaces, open packages, or the product contact surfaces of package components.





## **DEFINITION: NON-PRODUCT CONTACT SURFACES**

All exposed surfaces from which splashed product, liquids, or other soils <u>cannot</u> drain, drop, diffuse or be drawn into or onto the product, product contact surfaces, open packages, or the product contact surfaces of package components.



## Key Steps in Hygienic Design Process

- Define Intended Uses & Risks
- Define Product Zones
- Define Cleaning Method
- Select Approved Materials of Construction
- Provide Accessibility to Clean and Inspect
- Design and Build to Meet Hygienic Criteria

## Define Cleaning Method

- How are the surfaces being cleaned:
  - Manually in place
  - Disassembled and COP cleaned
  - Cleaned without disassembly fully automated CIP system
  - Combination of Manual, COP and CIP
## Key Steps in Hygienic Design Process

- Define Intended Uses & Risks
- Define Product Zones
- Define Cleaning Method
- Select Approved Materials of Construction
- Provide Accessibility to Clean and Inspect
- Design and Build to Meet Hygienic Criteria

#### Select Approved Materials of Construction

- What is the corrosive issues with product or process?
  - Low pH High pH
  - Temperature
- What is the Material of Construction?
  - Metal
  - Plastic
  - Elastomer

# Ma

#### HYGIENIC REQUIREMENTS: MATERIALS OF CONSTRUCTION

| Physical Properties | Mechanical Properties                   |
|---------------------|-----------------------------------------|
| Inert               | Durable                                 |
| Nontoxic            | Smooth                                  |
| Non-corrosive       | Free of cracks and crevices             |
| Non-reactive        |                                         |
| Non-contaminating   | <b>Operational Properties</b>           |
| Non-porous          | Cleanable                               |
| Impervious          | <ul> <li>Reduced maintenance</li> </ul> |
|                     |                                         |

#### **304 Stainless Steel Meets Requirements**

## Key Steps in Hygienic Design Process

- Define Intended Uses & Risks
- Define Product Zones
- Define Cleaning Method
- Select Approved Materials of Construction
- Provide Accessibility to Clean and Inspect
- Design and Build to Meet Hygienic Criteria

#### ACCESSABILITY AND INSPECTABILITY

Hygienic equipment shall be designed where:

- Surfaces are accessible for cleaning
- · Surfaces are accessible for sanitizing
- · Surfaces are accessible for inspection

Applies to all cleaning methods

· Manual, CIP, and COP

#### IF YOU CANNOT SEE IT, YOU CANNOT CLEAN IT!

## Key Steps in Hygienic Design Process

- Define Intended Uses & Risks
- Define Product Zones
- Define Cleaning Method
- Select Approved Materials of Construction
- Provide Accessibility to Clean and Inspect
- Design and Build to Meet Hygienic Criteria

#### Key Cleanability Design Considerations

- Material of Constructions
- Surface Finishes
- Joint Design
- No Cracks or Crevices
- Free Draining
- No Dead Legs Blind Spots Hollows
- Accessibility to Clean
- Accessibility to Inspect

Let's look at a series of design failure before we proceed to the next section "Hygienic Design & Fabrication Considerations and Techniques

#### Materials of Construction-Corrosion Failure







# Pitting Corrosion





#### Bad Weld Cannot be Clean





## Joint Design – Hygienic Failure



#### Bolted Joint



## Plates removed



## Crevice Failure







# Draining Failure



## Hollow Roller Failure



## Access to clean failure



91

#### • Gearbox over product





# Avoid Hygienic Design Failure Follow The Hygienic Design Process

- Define Intended Uses & Risks
- Define Product Zones
- Define Cleaning Method
- Select Approved Materials of Construction
- Provide Accessibility to Clean and Inspect
- Design and Build to Meet Hygienic Criteria

#### Hygienic Hazards Contributed during Equipment Design

| Design Area        | Possible Hazard                                                                                                           |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|
| Cleanable          | Is the design difficult to clean?                                                                                         |
| Accessible         | Are areas difficult to inspect or clean?                                                                                  |
| Compatible         | Are the materials incompatible and do they lead to contamination?                                                         |
| No Niches          | Are niches present that can collect debris, harbor bacteria or allergens?                                                 |
| Pooling, Ponding   | Are surfaces prone to collect liquid and/or debris?                                                                       |
| Durable            | Are surfaces resistant to damage in normal use, that result in niches, cracks, warping, etc.?                             |
| Sealed             | Are there internal cavities that create harborage sites?                                                                  |
| Enclosures         | Do enclosures and similar hardware contribute to non-hygienic condition?                                                  |
| Operationally Safe | Do operational functions contribute to non-hygienic conditions? e.g., reaching over a product area, control touch panels, |
| Foreign Objects    | Are there parts that can come loose or fall off? How are glass, stones, metal fragments handled?                          |
| Installation       | Can equipment be improperly installed resulting in a hazard?                                                              |
| Maintenance        | When and how to perform, when is a part worn out?                                                                         |
| Lubrication        | Type, where used, when used? (is equipment designed to protect from lubrication encroachment?)                            |

Used with permission & based on "A Process for Concurrent Hygienic Design and Risk Assessment" page 26 by Mettler – Toledo, 2016

Any Questions Before We Move on to

# "Hygienic Design & Fabrication Considerations and Techniques"