Corrosion and Corrosion Resistance of Stainless Steel Sanitary Equipment

Sponsor: Nickel Institute Speaker: Dr. James D. Fritz

Presentation Topics

- What is a Stainless Steel
- Families of Stainless Steel
- Mode of corrosive attack
- Environmental Factors
- Metallurgical Factors
- Fabrication Issues

How Does A Stainless Steel Work?

Stainless steel is iron + at least 10.5% chromium

< 10.5% Chromium

> 10.5% Chromium

Stainless Steel Families

4

What Is an Austenitic Stainless Steel?

- Austenitic stainless steels are Fe-based alloys with a Cr content of at least 10.5% and microstructure composed primarily of austenite phase.
- Common examples 304, 304L, 316, and 316L

Austenitic Stainless Steels

316L austenitic Stainless Steel – wrought plate

6% Mo austenitic Stainless Steel - wrought plate

Characteristics of Austenitic Stainless Steels

Moderately Strong Excellent Ductility, Toughness, & Weldability **Corrosion Resistant** Susceptible to Stress Corrosion Cracking Expensive (high in nickel) **High Thermal Expansion** Low Thermal Conductivity

ASTM A240 Compositional Ranges of Common Austenitic Stainless Steels

Name (UNS #)	С	Mn	Р	S	Si	Cr	Ni	Мо	N	Cu
201L (S20103)	0.03	5.50 7.50	0.045	0.030	0.75	16.0 18.0	3.5 5.5		0.25	
304L (S30403)	0.03	2.0	0.045	0.030	0.75	17.5 19.5	8.0 12.0		0.10	
316L (31603)	0.03	2.0	0.045	0.030	0.75	16.0 18.0	10.0 14.0	2.00 3.00	0.10	
317L (S31703)	0.03	2.0	0.045	0.030	0.75	18.0 20.0	11.0 15.0	3.0 4.0	0.10	
<u>6% Mo SST</u> 254 SMO® (S31254)	0.02	1.0	0.030	0.010	0.80	19.5 20.5	17.5 18.5	6.0 6.5	0.18 0.22	0.50 1.00
AL-6XN® (N08367)	0.03	2.0	0.040	0.030	1.00	20.0 22.0	23.5 25.5	6.0 7.0	0.18 0.25	0.75

What Is a **Ferritic Stainless Steel?**

- Ferritic stainless steels are Fe-based alloys with a Cr content of at least 10.5% and a microstructure composed primarily of ferrite phase.
- Common examples 409, 430, 436, 439, and 444

Ferritic Stainless Steels

439 Ferritic Stainless Steel

ASTM A240 Compositional Ranges of Common Ferritic Stainless Steels

Name (UNS #)	С	Mn	Ρ	S	Si	Cr	Ni	Мо	Ν	other
430 (S43000)	0.12	1.00	0.040	0.030	1.00	16.0 18.0	0.75			
439 (S43035)	0.03	1.00	0.040	0.030	1.00	17.0 19.0	0.50		0.030	Ti [0.20+4(C+N)] 1.10 max
434 (S43400)	0.12	1.00	0.040	0.030	1.00	16.0 18.0		0.75 1.25		
436 (43600)	0.12	1.00	0.040	0.030	1.00	16.0 18.0		0.75 1.25		Cb 5xC 0.80 max
444 (44400)	0.025	1.00	0.040	0.030	1.00	17.5 19.5	1.00	1.75 2.50	0.035	Ti + Cb [0.20+4(C+N)] 1.10 max
SEA-CURE® (S44660)	0.030	1.00	0.040	0.030	1.00	25.0 28.0	1.0 3.5	3.0 4.0	0.040	Ti + Cb 0.20-1.00, 6 X(C+N) min

Characteristics of Ferritic Stainless Steels

Moderately Strong Moderately Ductile, Limited Toughness (DBTT) **Limited Weldability Corrosion Resistant** Virtually Immune to Stress Corrosion Cracking **Cost effective (low nickel) Lower Thermal Expansion Higher Thermal Conductivity**

What Is a Duplex Stainless Steel?

- Duplex stainless steels steels are Fe-based alloys with a minimum Cr content of 10.5% and a structure of about 50% austenite and 50% ferrite phase, but may range from 30 to 70%.
- Common example Type 2205

Microstructure ≈ 50% Ferrite/50% Austenite

Type 2205 wrought plate structure

Characteristics of Second Generation Duplex Stainless Steels

Very Strong Good Toughness, Ductility, & Weldability Corrosion Resistant Resistant to Stress Corrosion Cracking Cost Effective (low nickel) Intermediate Thermal Expansion and Thermal Conductivity

ASTM A240 Compositional Ranges of Common Duplex Stainless Steels

Name (UNS)	С	Mn	Р	S	Si	Cr	Ni	Мо	N	Cu
LDX 2101® (S32101)	0.04	4.0 6.0	0.040	0.030	1.00	21.0 22.0	1.25 1.70	0.10 0.80	0.20 0.25	0.10 0.80
2304 (S32304)	0.03	2.50	0.040	0.030	1.00	21.5 24.5	3.0 5.5	0.05 0.60	0.05 0.20	0.05 0.60
2205 (S32205)	0.03	2.0	0.030	0.020	1.00	22.0 23.0	4.5 6.5	3.0 3.5	0.14 0.20	
2507 (S32750)	0.03	1.20	0.035	0.020	0.80	24.0 26.0	6.0 8.0	3.0 5.0	0.24 0.32	0.50

ASTM A240 - Required Mechanical Properties

Grade	UNS #	Tensile St (KSI)	Yield St (KSI)	% Elg.	Hardness (max)
304L	S30403	70	25	40	201 HBW
316L	S31603	70	25	40	217 HBW
Al-6XN [®] (sheet)	N08367	100	45	30	100 RB
430	S43000	65	30	22	183 HBW
434	S43400	65	35	22	89 RB
444	S44400	60	40	20	217 HBW
2101 (t ≤ 0.187") 2101 (t > 0.187")	S32101	101 94	77 65	30 30	290 HBW 290 HBW
2304	S32304	87	58	25	290 HBW
2205	S32205	95	65	25	293 HBW
2507	S32750	116	80	15	310 HBW

Common Modes of Corrosive Attack With Stainless Steels

- Uniform or General Corrosion
- Pitting Corrosion
- Crevice Corrosion
- Stress Corrosion Cracking (at temp > 50C)
- Intergranular Attack
- Galvanic Corrosion
- Microbiologically Influenced Corrosion (MIC)

Pitting Corrosion

- Solution
- Passive Film
- **Base Metal**

Pitting Corrosion

- Deep narrow attack which often results in through-wall penetration
- Occurs with passive metals in specific environments
- Initiates at weak links (inclusions, inferior surfaces, etc.)

Pitting of Stainless Steel

- Localized attack at locations where free access to the surrounding environment is restricted
- Very similar to a growing pit
- Crevices can be formed either by metal-tometal or metal-to-nonmetal surfaces

- Occurs more readily than pitting
- Crevices can result from design
- Crevices can result from service (under deposits)
- Crevice geometry is critical (deep and tight crevices are more detrimental)

Common Crevice Formers

- Lap joints
- O-ring seals
- Gasket seals
- Connectors
- Rolled tube joints

- Dirt, oil, or grease
- Crayon marks
- Tape
- Fouling deposits
- Corrosion products

Very difficult to avoid crevices!!

Most Likely Modes of Attack

Pitting

Pitting Corrosion

© Corrosion Atlas, 1988

Corrosion at the Crevice Created by the Lack of Full Penetration

304 stainless steel piping for a spa application

Environmental Factors that Promote Pitting and Crevice Corrosion

- Higher chloride content
- Higher temperature
- Lower pH
- Reduced sulfate levels
- More noble corrosion potentials
 - Increased addition of oxidizing species (increased levels of free chlorine)

Factors that Promote Pitting and Crevice Corrosion

- Static conditions
- Tight crevice geometries
- Evaporative conditions
- Presence of aggressive bacteria (MIC)

Engineering Diagrams

Engineering Diagrams

Metallurgical Variables

- Alloy composition
 - Primary alloying additions
 - Residual elements
- Undesirable secondary phases
 - Inclusions sulfides, carbides, nitrides, etc.
 - Intermetallic compounds sigma and chi
- Surface condition
- Phase balance (austenite/ferrite)
- Homogenized structure

Critical Pitting and Crevice Temperatures

CPT & CCT Measured in 6% ferric chloride

Influence of Alloy Content

- Alloying elements that improve crevice corrosion resistance Cr, Mo, & N
- Relative resistance is proportional to the "Pitting Resistance Equivalent Number"

(PREn) = %Cr + 3.3%Mo + 16%N

Austenitic Grades

UNS Number	Common Name	PREn		
S20103	201L	19		
S30403	304L	20		
S31603	316L	24		
S31703	317L	28		
S31254				
N08367	6% Mo	41 - 43		

Ferritic Grades

UNS Number	Common Name	PREn	
S43000	430	17	
S43035	439	18	
S43400	434	19	
S44400	444	24	
S44660	SEA-CURE®	38	

Duplex Grades

UNS Number	Common Name	PREn
S320103	LDX 2101®	23
S32304	2304	24
S32205	2205	35
S32750	2507	41

Effect of S Content on Pitting Resistance

Brennert & Eklund Scandinavian J. of Met. 5 (1976)

Chloride Stress Corrosion Cracking

Stress Corrosion Cracking

© Corrosion Atlas, 1988

SCC - Austenitic Stainless Steel

Environmental Factors that Promote Chloride SCC

SCC is Promote by:

- Increased chlorides
- Increased tensile stress
- Higher temperature (rare below 50 ° C)
- Lower pH
- Evaporative conditions
- Longer exposure times

Metallurgical Variables

- Austenitic grades with 8 10 % Ni tend to be very susceptible
- Ferritic SST grades (400 series) tend to be very resistant
- Nickel alloys tend to be very resistant
- Duplex grades have good resistance

Chloride SCC of Duplex SST

Reference - Sandvik, A High Performance Duplex Stainless Steel

SCC Threshold for a 6% Mo SST (N08367)

Ref. – R. Gerlock and J Fritz, NACE Corrosion 2002, Paper No 02423

Heat Tint

Weld Corrosion Resistance

Weld Corrosion Resistance

Thank You

