How do some of the leading authorities in building, using and inspecting hygienic processing systems view the challenges to improving hygienic design?

GEA – "engineering for a better world"

Fiscal year 2018

Our applications – in touch with GEA every day

engineering for a better world

Classic approach

- Define standard design criteria for
 - Materials
 - Design
 - Fabrication

Symbol Holder

- Responsible for
 - Design & compliance documentation
 - Cleaning validation

Food Producer

- Responsible for
 - System maintenance
 - System operation

Header and Footer

Transition Food Safety Modernization Act

Thoughts on challenges

Validation in application required

Determining factors of hygienic processes

- Design
- Process set-up
- Means of control

Standards need to acknowledge application variances

- E.g. pasteurization vs. milk harvesting
- EHEDG standard for milk processing plants, applicability for products with varying viscosity/texture questionable; not suited for small equipment
- PMO is widely referenced but regulations therein do not pertain to many food products/applications in the range of today's 3-A standards

Rapid rate of development of materials and processes lead to frequent additions in FDA CFR listings that do not make a way into 3-A standards (e.g. polymers).

Regulation of end product quality can allow more freedom to innovate better hygienic processes compared to regulation of equipment

